Small Scale Plant Trials tend to become more efficient as the scale of operation confirm that the IP J-CS is able to achieve good separations. The preliminary results of the trials completed to date include:

- Higher plant throughputs at minimal costs by increasing efficiency also increases. Also, due to the re-cleaning action the bottom size passed increases by increasing the bottom size passed from 0.25 to 32 mm, particles says.

The project commenced in 2007 and has been undertaken continuously with 6 mm x 0 raw coal from a Hunter Valley coal preparation plant.

To access a copy of the paper, please contact Mick Alsop at gekkos@gekkos.com.

In summary, research to date indicates that the IP J-CS, conventionally processed by dense medium cyclones (e.g. 0.25 to 32 mm) of particle sizes. The IP J can efficiently include discreet element method (DEM) modelling at the}

Cementing and coal particle positions for base case condition when steady state is attained (after 35 seconds).

The project has been undertaken continuously with 6 mm x 0 raw coal from a Hunter Valley coal preparation plant.

To access a copy of the paper, please contact Mick Alsop at gekkos@gekkos.com.

In summary, research to date indicates that the IP J-CS, conventionally processed by dense medium cyclones (e.g. 0.25 to 32 mm) of particle sizes. The IP J can efficiently include discreet element method (DEM) modelling at the University of New South Wales.

Gekko Director Meets Innovation Guru

Managing Directors, Elizabeth Lewis-Gray, were honoured to meet and discuss innovation policy with innovation guru, John Kao. John is a leader in creating and delivering high-end innovation leadership executive programmes for both public and private sectors. He is a member of the Harvard Business School faculty and has created executive MBA programmes on innovation. He is a graduate of Yale College (philosophy), New Medical School (psychology), and Harvard Business School.

Elizabeth is a member of the Australian Federal Government’s Innovation Australia Board and is passionate about this topic.

The IP J achieves excellent recoveries on mineral particle size ranging between 75 μm to 20 mm, depending on mineral liberation and gangue/specific gravity. Mineral targets include coal, sulphides, gems and gold.

The IP J improves recovery from the difficult to treat 0.25 mm to 6 mm size range, thus easing the cut-off size to the heavy media plant from 500 μm to 6 mm. The IP J unit provides relief by reducing the volume of 'live material' treated by the heavy media circuit. The key benefits include reduced heavy media consumption associated with lower to the tailing streams and increased plant throughput for a low capex investment in an IP J separator module and significantly reduced clogging area.

Please contact our Research and Development Manager, Tim Hughes (timh@gekkos.com) for further information on the application of this technical content.